Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653977

RESUMO

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Fatores de Transcrição , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Fatores de Transcrição NFATC/metabolismo , Glucose Oxidase/metabolismo , Animais
2.
Biochem Pharmacol ; 184: 114359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285109

RESUMO

Poly-ADP-ribose polymerase (PARP) inhibitors are active against cells and tumors with defects in homology-directed repair as a result of synthetic lethality. PARP inhibitors (PARPi) have been suggested to act by either catalytic inhibition or by PARP localization in chromatin. In this study, we treat BRCA1 mutant cells derived from a patient with triple negative breast cancer and control cells for three weeks with veliparib, a PARPi, to determine if treatment with this drug induces increased levels of mutations and/or an inflammatory response. We show that long-term treatment with PARPi induces an inflammatory response in HCC1937 BRCA1 mutant cells. The levels of chromatin-bound PARP1 in the BRCA1 mutant cells correlate with significant upregulation of inflammatory genes and activation of the cyclic GMP-AMP synthase (cGAS)/signaling effector stimulator of interferon genes (STING pathway). In contrast, an increased mutational load is induced in BRCA1-complemented cells treated with a PARPi. Our results suggest that long-term PARP inhibitor treatment may prime both BRCA1 mutant and wild-type tumors for positive responses to immune checkpoint blockade, but by different underlying mechanisms.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno B7-H1/metabolismo , Proteína BRCA1/imunologia , Benzimidazóis/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/genética , Proteínas de Membrana/metabolismo , Mutação
3.
Mutagenesis ; 35(1): 69-78, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31880305

RESUMO

Defects in DNA repair have been linked to the accumulation of somatic mutations in tumours. These mutations can promote oncogenesis; however, recent developments have indicated that they may also lead to a targeted immune response against the tumour. This response is initiated by the development of new antigenic epitopes (neoepitopes) arising from mutations in protein-coding genes that are processed and then presented on the surface of tumour cells. These neoepitopes are unique to the tumour, thus enabling lymphocytes to launch an immune response against the cancer cells. Immunotherapies, such as checkpoint inhibitors (CPIs) and tumour-derived vaccines, have been shown to enhance the immunogenic response to cancers and have led to complete remission in some cancer patients. There are tumours that are not responsive to immunotherapy or conventional tumour therapeutics; therefore, there is a push for new treatments to combat these unresponsive cancers. Recently, combinatorial treatments have been developed to further utilise the immune system in the fight against cancer. These treatments have the potential to exploit the defects in DNA repair by inducing more DNA damage and mutations. This can potentially lead to the expression of high levels of neoepitopes on the surface of tumour cells that will stimulate an immunological response. Overall, exploiting DNA repair defects in tumours may provide an edge in this long fight against cancer.


Assuntos
Antígenos de Neoplasias/genética , Imunoterapia , Mutação , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/patologia
4.
Environ Sci Pollut Res Int ; 26(15): 15124-15135, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30924039

RESUMO

Gene-specific changes in DNA methylation by pesticides in occupationally exposed populations have not been studied extensively. Of particular concern are changes in the methylation profile of tumor-suppressor, such as CDKN2B and CDKN2A, genes involved in oncogenesis. The aim of this study was to evaluate the methylation profiles of CDKN2B and CDKN2A genes in urban pesticide applicators and their relationship with occupational exposure to pesticides. A cross-sectional study was conducted in 186 urban pesticide applicators (categorized as high or moderate exposures) and 102 participants without documented occupational exposures to pesticides. Acute and chronic pesticide exposures were evaluated by direct measurement of urinary dialkylphosphates, organophosphate metabolites, and a structured questionnaire, respectively. Anthropometric characteristics, diet, clinical histories, and other variables were estimated through a validated self-reported survey. DNA methylation was determined by pyrosequencing of bisulfite-treated DNA. Decreased DNA methylation of the CDKN2B gene was observed in pesticide-exposed groups compared to the non-exposed group. In addition, increased methylation of the CDKN2A promoter was observed in the moderate-exposure group compared to the non-exposed group. Bivariate analysis showed an association between CDKN2B methylation and pesticide exposure, general characteristics, smoking status, and micronutrients, while changes in CDKN2A methylation were associated with pesticide exposure, sex, educational level, body mass index, smoking status, supplement intake, clinical parameters, and caffeine consumption. These data suggest that pesticide exposure modifies the methylation pattern of CDKN2B and CDKN2A genes and raise important questions about the role that these changes may play in the regulation of cell cycle activities, senescence, and aging.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Praguicidas/química , Estudos Transversais , Inibidor de Quinase Dependente de Ciclina p15/química , Metilação de DNA , Genes p16 , Humanos , Exposição Ocupacional , Regiões Promotoras Genéticas/genética
5.
Ann Glob Health ; 84(2): 212-224, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30873799

RESUMO

BACKGROUND: Children are susceptible to environmental contaminants and are at risk of developing diseases, more so if the exposure begins at an early age. Epidemiological studies have postulated the hypothesis of the fetal origin of disease, which is mediated by epigenetic changes. Epigenetic marks are inheritable; they modulate the gene expression and can affect human health due to the presence of environmental factors. OBJECTIVE: This review focuses on DNA-methylation and its association with environmental-related diseases in children. METHODS: A search for studies related to DNA-methylation in children by pre- or post-natal environmental exposures was conducted, and those studies with appropriate designs and statistical analyses and evaluations of the exposure were selected. FINDINGS: Prenatal and early life environmental factors, from diet to exposure to pollutants, have been associated with epigenetic changes, specifically DNA-methylation. Thus, maternal nutrition and smoking and exposure to air particulate matter, polycyclic aromatic hydrocarbons, arsenic, heavy metals, persistent organic pollutants, and some endocrine disrupters during pregnancy have been associated with genomic and gene-specific newborns' DNA-methylation changes that have shown in some cases sex-specific patterns. In addition, these maternal factors may deregulate the placental DNA-methylation balance and could induce a fetal reprogramming and later-in-life diseases. CONCLUSIONS: Exposure to environmental pollutants during prenatal and early life can trigger epigenetic imbalances and eventually the development of diseases in children. The integration of epigenetic data should be considered in future risk assessments.


Assuntos
Saúde da Criança , Exposição Ambiental , Saúde Ambiental , Epigênese Genética , Criança , Metilação de DNA/genética , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Saúde Ambiental/métodos , Saúde Ambiental/organização & administração , Feminino , Humanos , Exposição Materna/efeitos adversos , Exposição Materna/prevenção & controle , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA